Répondre :
Réponse :
Bonjour,
Explications étape par étape
1. Soit a et b deux réels non nuls tels que a≠b et a≠0. n est un entier naturel supérieur ou égal à 1.
Simplifier Sn=1+(a/b)+(a/b )²+(a/b)³+⋯+(a/b)puissance n−1
Le problème qui se pose est que la démonstration d'une somme determes d'une suite géométrique repose sur cette factorisation!
C'est donc le serpent qui se mord la queue...
[tex]a, b \in \mathbb{R}_0, \ n\in \mathbb{N}_0\\S_n=1+\dfrac{a}{b}+(\dfrac{a}{b})^2+(\dfrac{a}{b})^3+...+\dfrac{a}{b})^{n-1}\\\\On\ pose\ x=\dfrac{a}{b}\\\\S_n=1+x+x^2+x^3+...+x^{n-1}\\Calculons\ S_n*(x-1).\\\\\begin{array}{c|c|c|c|c|c|c|c}x^n&x^{n-1}&x^{n-2}&....&x^3&x^2&x&1\\&1&1&1&1&...&1&1\\&&&&&&1&-1\\--&--&--&--&--&--&--&--\\&-1&-1&-1&-1&...&-1&-1\\1&1&1&1&...&1&\\--&--&--&--&--&--&--&--\\1&0&0&0&0&...&0&-1\\\end{array}\\\\S_n*(x-1)=x^n-1\\\\[/tex]
[tex](\dfrac{a}{b})^n-1=(\dfrac{a}{b}-1)(1+\dfrac{a}{b}+(\dfrac{a}{b})^2+(\dfrac{a}{b})^3+...+(\dfrac{a}{b})^{n-1})\\\\(\dfrac{1}{b})^{n}*(a^n-b^n)\\=\dfrac{1}{b}*(a-b)*(\dfrac{1}{b})^{n-1}(b^{n-1}+ab^{n-2}+a^2b^{n-3}+....+a^{n-4}b^3+a^{n-3}b^2+a^{n-2}b+a^{n-1})\\\\\boxed{a^n-b^n)=(a-b)*(b^{n-1}+ab^{n-2}+a^2b^{n-3}+....+a^{n-4}b^3+a^{n-3}b^2+a^{n-2}b+a^{n-1})}[/tex]
3)
[tex]a)\\x^3-1=(x-1)(x^2+x+1)\\\\b)\\x^3-2^3=(x-2)(x^2+x*2+2^2)=(x-2)(x^2+2x+4)\\[/tex]
Je vous laisse le soin de vérifier que les discriminants sont négatifs.
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !