Répondre :
Réponse :
1) quelles valeurs peut prendre x ?
x peut prendre les valeurs [0 ; 4]
2) calculer l'aire de la croix si x = 1.2
A = 16 - 4 * 1.2² = 10.24 cm²
3) exprimer en fonction de x, l'aire A de la croix
A = 16 - 4 x²
4) l'aire de la croix peut aussi se calculer en utilisant la formule
A = 4(4 - 2 x) + 2 x(4 - 2 x)
développer cette deuxième expression pour montrer qu'elle est égale à la première (question 3)
A = 4(4 - 2 x) + 2 x(4 - 2 x)
= 16 - 8 x + 8 x - 4 x²
= 16 - 4 x²
Explications étape par étape
Réponse :
Bonjour.
Inutile de suivre un cours pour apprendre à résoudre cet exercice, on y parvient très bien avec la logique seule.
1)
Les valeurs de x s'étendent de 0 à 2.
2)
Pour x=1,2, on soustrait l'aire totale du grand carré (4² donc 16) d'avec les 4 petites aires carrées exprimées par x (donc 4x²). Donc l'aire de la croix vaut 16 - 4*1,2² = 10,24.
3)
Aire de la croix = 4² - 4x² = 16 - 4x².
4)
Aire de la croix = 4(4-2x)+2x(4-2x) = 16 - 8x + 8x - 4x² = 16 - 4x². On retrouve l'égalité précédente.
Explications étape par étape
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !