Répondre :
(2) = carré
Ex 25 :
Le triangle HAC est rectangle en H. D’après le théorème de Pythagore, on a :
AC(2) = AH(2) + HC(2)
13(2) = 12(2) + HC(2)
169 = 144 + HC(2)
HC(2) = 169 - 144
HC(2) = 25
Donc HC = V25
HC = 5 cm
Le triangle ABH est rectangle en H. D’après le théorème de Pythagore, on a :
AB(2) = AH(2) + BH(2)
AB(2) = 12(2) + 9(2)
AB(2) = 144 + 81
AB(2) = 225
Donc AB = V225
AB = 15 cm
Ensuite : BC = BH + HC
BC = 9 cm + 5 cm
BC = 14 cm
[AB] est le plus grand côté du triangle ABC donc le triangle ne peut être rectangle qu’en C.
D’une part : AB(2) = 15(2) = 225
D’autre part : BC(2) + AC(2) = 14(2) + 13(2) = 196 + 169 = 365
Donc : AB(2) =/ (est différent de, c’est le égal barré) BC(2) + AC(2)
D’après la réciproque du théorème de Pythagore, le triangle ABC n’est pas rectangle en C.
Ex 34 :
[BE] est le plus grand côté du triangle ABE donc le triangle ne peut être rectangle qu’en A.
D’une part : BE(2) = 26(2) = 676
D’autre part : AB(2) + AE(2) = 24(2) + 10(2) = 576 + 100 = 676
Donc BE(2) = AB(2) + AE(2)
D’après la réciproque du théorème de Pythagore, le triangle ABE est rectangle en A.
On en déduit que l’étagère est bien perpendiculaire au mur donc horizontale.
Ex 25 :
Le triangle HAC est rectangle en H. D’après le théorème de Pythagore, on a :
AC(2) = AH(2) + HC(2)
13(2) = 12(2) + HC(2)
169 = 144 + HC(2)
HC(2) = 169 - 144
HC(2) = 25
Donc HC = V25
HC = 5 cm
Le triangle ABH est rectangle en H. D’après le théorème de Pythagore, on a :
AB(2) = AH(2) + BH(2)
AB(2) = 12(2) + 9(2)
AB(2) = 144 + 81
AB(2) = 225
Donc AB = V225
AB = 15 cm
Ensuite : BC = BH + HC
BC = 9 cm + 5 cm
BC = 14 cm
[AB] est le plus grand côté du triangle ABC donc le triangle ne peut être rectangle qu’en C.
D’une part : AB(2) = 15(2) = 225
D’autre part : BC(2) + AC(2) = 14(2) + 13(2) = 196 + 169 = 365
Donc : AB(2) =/ (est différent de, c’est le égal barré) BC(2) + AC(2)
D’après la réciproque du théorème de Pythagore, le triangle ABC n’est pas rectangle en C.
Ex 34 :
[BE] est le plus grand côté du triangle ABE donc le triangle ne peut être rectangle qu’en A.
D’une part : BE(2) = 26(2) = 676
D’autre part : AB(2) + AE(2) = 24(2) + 10(2) = 576 + 100 = 676
Donc BE(2) = AB(2) + AE(2)
D’après la réciproque du théorème de Pythagore, le triangle ABE est rectangle en A.
On en déduit que l’étagère est bien perpendiculaire au mur donc horizontale.
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !