👤

Bonjour, je suis complètement perdu avec cette exercice, je ne sais pas comment le résoudre malgré du temps passé dessus, j'ai vraiment besoin d'aide s'il vous plait, voila l’exercice

Bonjour Je Suis Complètement Perdu Avec Cette Exercice Je Ne Sais Pas Comment Le Résoudre Malgré Du Temps Passé Dessus Jai Vraiment Besoin Daide Sil Vous Plait class=
Bonjour Je Suis Complètement Perdu Avec Cette Exercice Je Ne Sais Pas Comment Le Résoudre Malgré Du Temps Passé Dessus Jai Vraiment Besoin Daide Sil Vous Plait class=

Répondre :

Partie A :

1) On a EF = 6-x-x = 6-2x, donc U(x) = (6-2x)³= 6³-216x+72x²-8x³= 216-216x+72x²-8x³

2) Le volume du parallélépipède étant égal à 6³ = 216, le volume total du flacon est égal à V(x) = 216 = -8x³+72x²-144x+288.

Partie B :

1 a. f fonction polynôme est dérivable sur R et f'(x)= -3x²+18x-18

b. f'(x) =0 ↔ -3x² +18x-18 =0 ↔ -x²+6x-6=0 ↔ x²-6x+6x=0. On a Δ = 36-24=12=(2√3)². D'où les solutions :

6+2√3/2 = 3+√3 et 3-√3

Seule nous intéresse la solution positive : a= 3+√3 ≈ 4.73 = 4.7 arrondi au dixième.

c. Le trinôme est négatif sauf entre 3-√3 et 3+√3.

Donc sur [0;3-3√3], f'(x) < 0 et la fonction f est décroissante et sur [3-√3;3], f'(x) > 0 et la fonction f est croissante (cf. voir tableau de variations ci-joint)

d. La dérivée s'annule en changeant de signe en x=3-√3 : l'extremum (minimum) est donc égal à f(α) = f(3-√3) = -(3-√3)³+9(3-√3)²-18(3-√3)+36 = 27 + 27√3-27+3√3+81+27-54√3-54+18√3+36=36-6√3

2. On a M(x:y) ∈ T ↔ y-f(1) = f'(1)(x-1).

f(1) = -1³+9x1²-18x1+36=26, f(1) = -3x1²+18x1-18=-3

Donc M(x:y) ∈ T ↔ y-26= -3(x-1) ↔ y = -3x + 29

3 a. (cf. tableau)

Partie C :

1. 8f(x) = 8(-x³+9x²-18x+36)=-8x³+72x²-144x+288=V(x)

2. D'après la partie B, la fonction f a pour minimum f(3-√3) = 36-6√3, donc le minimum de la fonction V est égal à :

Vm = 8f(3-√3) = 8(36-6√3) = 288 - 48√3 ≈ 204.8≈ 204(cm³)

(cf.graphique)

Voir l'image SAIIKO780
Voir l'image SAIIKO780
Voir l'image SAIIKO780