👤

24. soit f et g deux fonctions definies sur R.
Étudier la parité du produit f g dans les cas suivants.
a) les fonctions fet g sont paires ;
b) les fonctions f et g sont impaires :
c) l'une est paire et l'autre impaire. j'ai besoin d'aide SVP​


Répondre :

Réponse :

Explications étape par étape

a) Soit f et g 2 fonctions paires sur R

[tex]\text{Soit }x\in \mathbb{R}.\\ fg(-x)= f(-x)\times g(-x) =f(x)\times g(x) $ car $f$ et $g$ sont paires\\Donc $fg(-x) = fg(x)$\\[/tex]

La fonction fg est donc paire

b) Soit f et g 2 fonctions impaires sur R

[tex]\text{Soit }x\in \mathbb{R}.\\ fg(-x)= f(-x)\times g(-x) =(-f(x))\times (-g(x)) $ car $f$ et $g$ sont impaires\\Donc $fg(-x) = f(x)\times g(x)=fg(x)\\[/tex]

La fonction fg est donc paire

b) Soit f paire et g impaire sur R

[tex]\text{Soit }x\in \mathbb{R}.\\ fg(-x)= f(-x)\times g(-x) =f(x)\times (-g(x)) $ car $f$ est paire et $g$ est impaire\\Donc $fg(-x) = -f(x)\times g(x)=-fg(x)\\[/tex]

La fonction fg est donc impaire

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions