👤

Bonjour pourriez vous m’aider pour la question suivante s’il vous plaît ?

Soit la fonction :
f(x) = ax^2+bx+c

Étant donné que la valeur de la fonction est 5 quand x=1

Étant donné que l’ordonne a l’origine est y=3

Étant donné que le sommet de la fonction est à x= -2

1) calculez les coefficients a,b et c

2) est ce que la fonction croise l’axe horizontale ?

Merci d’avance !


Répondre :

Bonjour,

Étant donné que la valeur de la fonction est 5 quand x=1

f(1)=5=a+b+c

Étant donné que l’ordonnée a l’origine est y=3

f(0)=a*0+b*0+c=c=3

Étant donné que le sommet de la fonction est à x = -2

f'(-2)=0=2a(-2)+b*(-2)=-4a+b

Ca donne c = 3 et

(1) a+b=5-3=2

(2)-4a+b=0

a+4a=2 <=> 5a=2<=>a=2/5

b=4a=8/5

1) Donc la fonction est

[tex]\Large \boxed{\sf \bf f(x)=\dfrac{2}{5}x^2+\dfrac{8}{5}x+3}[/tex]

2) Le discriminant est négatif.

[tex]\Delta=b^2-4ac=\dfrac{8^2}{5^2}-4\dfrac{2}{5}*3=\dfrac{-56}{25}=-2.24 < 0[/tex]

Donc il n'y a pas de racines réelles.

Ce qui veut dire que la courbe de f ne croise pas l'axe des abscisses.

merci

bjr

f(x) = ax² + bx + c

1) déterminer les coefficients  a, b et c

on écrit les 3 conditions

• f(1) = -5

  a + b + c = 5 (1)

• f(0= 3

  c = 3   (2)

• abscisse du sommet -2

l'abscisse du sommet est -b/2a

 d'où -b/2a = -2

           b/2a = 2

           b = 4a (3)

on a un système de 3 équations à 3 inconnues

a + b + c = 5   (1)

c = 3    (2)

 b = 4a    (3)

on remplace c par 3 dans (1)

a + b + 3 = 5

a + b = 2 (4)

on résout

a + b = 2 (4)

b = 4a    (3)

on remplace b par 4a dans (4)

a + 4a = 2

5a = 2

a = 2/5

et b = 8/5

                   f(x) = (2/5)x² + (8/5)x + 3

2)

 • la coefficient de x est positif, la parabole qui représente cette fonction  est tournée vers le haut

• l'abscisse du sommet est -2

 son ordonnée est

f(-2) = (2/5)*(-2)² + (8/5)*(-2) + 3

       = 8/5 - 16/5 + 3

      = -8/5 + 3

      = 1,4

ce nombre est positif

le sommet est au-dessus de l'axe des abscisses

Cette parabole ne coupe pas l'axe des abscisses

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions