Répondre :
Réponse :
ex3
1) calculer d2 et d3
d2 = d1 - 0.01 d1 = d1(1 - 0.01) = 0.99 d1 = 0.99 x 50 = 49.5
d3 = 0.99 x 49.5 = 49.005
2) pour tout n ∈ N* exprimer dn+1 en fonction de dn
dn+1 = 0.99 x dn
la suite (dn) est une suite géométrique de raison q = 0.99 et de premier terme d1 = 50
3) exprimer dn en fonction de n
dn = d1 x qⁿ⁻¹ donc dn = 50 x (0.99)ⁿ⁻¹
4) pour tout entier n ∈ N* on note Ln = d1 + d2 + ..... + dn
exprimer Ln en fonction de n
Ln = 50 + 50 x 0.99 + 50 x 0.99² + ...... + 50 x (0.99)ⁿ⁻¹
= 50( 1 + 0.99 + 0.99² + ......+ 0.99ⁿ⁻¹)
or 1 + 0.99 + 0.99² + .....+ 0.99ⁿ⁻¹ = (1 - 0.99ⁿ⁻¹⁺¹)/(1 - 0.99) = (1 - 0.99ⁿ)/0.01
donc Ln = 50 x (1 - 0.99ⁿ)/0.01 = 5000 x (1 - 0.99ⁿ)
5) conjecturer la limite de suite Ln quand n tend vers + ∞
lim Ln = lim 5000 x (1 - 0.99ⁿ)
n→ + ∞ n→ + ∞
Lim 0.99ⁿ = 0 donc 1 - 0 = 1 donc lim Ln = 5000
n→ + ∞ n→ + ∞
donc le globe trotters peut parcourir les 5000 km prévue
Explications étape par étape
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !