Répondre :
Réponse :
Bonsoir,
Explications étape par étape
[tex]n \geq 0\\\\Soit\ 1 \leq k \leq n\\\\1+n^2 \leq k+n^2 \leq n+n^2\\\\\dfrac{1}{1+n^2} \geq \dfrac{1}{k+n^2} \geq \dfrac{1}{n+n^2} \\\\\dfrac{n}{1+n^2} \geq \dfrac{n}{k+n^2} \geq \dfrac{n}{n+n^2} \\[/tex]
[tex]On\ explicite\ pour\ 1 \leq k \leq n\\\\\\\dfrac{n}{1+n^2} \geq \dfrac{n}{1+n^2} \geq \dfrac{n}{n+n^2} \\\\\dfrac{n}{1+n^2} \geq \dfrac{n}{2+n^2} \geq \dfrac{n}{n+n^2} \\\\\dfrac{n}{1+n^2} \geq \dfrac{n}{3+n^2} \geq \dfrac{n}{n+n^2} \\\\...\\\\\dfrac{n}{1+n^2} \geq \dfrac{n}{n+n^2} \geq \dfrac{n}{n+n^2} \\[/tex]
[tex]On \ additionne\ membre\ \` a \ membre\\\\n*\dfrac{n}{1+n^2} \geq u_n \geq n*\dfrac{n}{n+n^2} \\[/tex]
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !