Répondre :
Bonjour,
1.a.
[tex]u_0=1\\ \\u_1=\dfrac{5u_0}{2u_0+5}=\dfrac{5}{2+5}=\dfrac{5}{7}\\ \\u_2=\dfrac{5u_1}{2u_1+5}=\dfrac{25}{7}\times \dfrac{7}{10+5*7}\\\\=\dfrac{25}{45}=\dfrac{5}{9} \\ \\u_3=\dfrac{5u_2}{2u_2+5}=\dfrac{25}{9}\times \dfrac{9}{10+5*9}=\dfrac{25}{55}=\dfrac{5}{11}[/tex]
b.
[tex]u_1-u_0=\dfrac{5}{7}-\dfrac{7}{7}=\dfrac{-2}{7} \\ \\u_2-u_1=\dfrac{5}{9}-\dfrac{5}{7}=\dfrac{5*7-5*9}{9*7} =-\dfrac{10}{63}[/tex]
[tex]u_{n+1}-u_n=\dfrac{5u_n-2u_n^2-5u_n}{2u_n+5}=-\dfrac{2u_n^2}{2u_n+5}[/tex]
En regardant les premiers termes nous constatons que la différence n'est pas constante donc la suite n'est pas une suite arithmétique.
c.
Nous avons admis que les termes de la suite u(n) sont tous strictement positifs donc différent de 0, la suite v(n) est donc bien définie.
[tex]\dfrac{1}{u_0}=1 \\ \\\dfrac{1}{u_1}=\dfrac{7}{5} \\ \\\dfrac{1}{u_2}=\dfrac{9}{5}\\ \\\dfrac{1}{u_3}=\dfrac{11}{5}[/tex]
Cela ressemble à une suite arithmétique de raison 2/5 et de premier terme 1
2.
[tex]\forall n \in \mathbb{N} \\ \\v_{n+1}-v_{n}=\dfrac{2u_n+5}{5u_n}-\dfrac{1}{u_n}\\ \\v_{n+1}-v_{n}=\dfrac{2u_n+5-5}{5u_n}=\dfrac{2}{5}[/tex]
Donc il s'agit d'une suite arithmétique de raison 2/5
b.
Nous appliquons le cours sur les suites arithmétiques
[tex]v_n=1+\dfrac{2}{5}n[/tex]
donc
[tex]\forall n \in \mathbb{N} \\ \\u_n=\dfrac{1}{v_n}=\dfrac{1}{1+\dfrac{2n}{5}}=\dfrac{5}{2n+5}[/tex]
Merci
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !