Répondre :
Bonjour,
Comme nous avons
[tex](n+1)^3=n^2(n+3)+3n+1[/tex]
si jamais [tex]3n+1 \leqslant n^2[/tex]
Nous avons notre division euclidienne.
Etudions [tex]x^2-3x-1=0[/tex]
[tex]\Delta=9+4=15\\\\x=\dfrac{3\pm \sqrt{15}}{2}<\dfrac{3+\sqrt{16}}{2}=3,5[/tex]
Ainsi pour n entier supérieur ou égal à 4, nous avons
[tex]n^2-3n-1\geq 0 \iff 1+3n\leq n^2[/tex]
et donc le reste de la division euclidienne est 3n+1.
Maintenant, examinons les cas qui restent
n=3
[tex]4^3=64=9*7+1 \text{ **** le reste est } 1[/tex]
n=2
[tex]3^3=27=4*6+3\text{ **** le reste est } 3[/tex]
n=1
[tex]2^3=8=1*8\text{ **** le reste est } 0[/tex]
merci
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !