👤

Bonjour pourriez-vous m’aider à cette exercice qui me pose problème ? Merci par avance.

Au début d’une partie, tous les joueurs sautent d’un bus volant et plongent en chute libre vers une île.
Dans cet exercice, on fait l’hypothèse que les frottements de l’air sont négligeables. Ainsi, la distance parcourue par l’avatar durant la chute, en mètres, t secondes après le saut
est donnée par : d(t) = 12gt2, où g ≈ 9,81m.s−1.
1) Sachant que la vitesse instantanée est égale au nombre dérivé de la distance en cet instant, quelle est la vitesse de l’avatar, 1 seconde après le saut.
On donnera le résultat en m.s−1, puis en km.h−1.
2) Pour que l’avatar ne s’écrase pas au sol, son planeur est ouvert automatiquement après 600 mètres de chute libre.
Déterminer, à la seconde près, le temps passé en chute libre.
3) On admet que la vitesse instantanée est donnée par la fonction v(t) = gt.
Sachant que l’accélération est la dérivée de la vitesse, montrer en utilisant le taux de variation pour tout nombre t que celle-ci est constante au cours du temps.


Répondre :

Réponse :

Explications étape par étape :

d(t) = 0,5 g t² avec g = 9,81 mètre/s²

■ vitesse(t) = g t = 9,81 t donne v(1seconde) = 9,81 m/s ≈ 35 km/h

■ temps de chute libre :

   0,5 * 9,81 t² = 600 donne t² = 122,3 donc t ≈ 11 secondes .

accélération = g = 9,81 m/s² = constante !