👤

Bonjour aidez moi svp, merci d'avance
On donne la formule :
1+3+5+....+(2n-1)=n^2 pour tout entier n>=1
Illustration :
Démontrer la formule donnée ci dessus de deux manières :
1) en considérant la suite arithmétique des entiers impairs
2)par un raisonnement par récurrence


Bonjour Aidez Moi Svp Merci Davance On Donne La Formule 1352n1n2 Pour Tout Entier Ngt1 Illustration Démontrer La Formule Donnée Ci Dessus De Deux Manières 1 En class=

Répondre :

Réponse :

Bonjour,

Explications étape par étape

Méthode de Gauss:

[tex]1+3+5+7+...+2n-3+2n-1=S\\2n-1+2n-3+...+3+1=S\\2n+2n+2n+..+2n+2n=2S\\\Longrightarrow\ S=\dfrac{n*2n}{2} =n^2\\[/tex]

a)

[tex]\displaystyle \sum_{i=1}^n\ (2i-1)=\dfrac{(2n-1)+1}{2} *n=n^2\\[/tex]

b)

[tex]initialisation:\\1=(2*1-1)^2\\h\'er\'edit\'e:\\\\\displaystyle \sum_{i=1}^n\ (2i-1)=n^2\ est\ vrai\\\\\displaystyle \sum_{i=1}^{n+1}\ (2i-1)=\displaystyle \sum_{i=1}^n\ (2i-1)\ +\ 2(n+1)-1\\\\=n^2+2n+2-1\\\\=(n+1)^2\\[/tex]

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions