👤

Salut

quelqu'un pourrait m'aider je vous en prie

Soit E un espace vectoriel sur R de dimension 3 rapporré dans la base (vecteur i, vecteur j, vecteur k) et soit S l'endomorphisme de E défini par b:
S (vecteur i ) = 5i + 8j - 10k
S (Vecteur j) = -8i -15j +20k
S (Vecteur k) = -4i - 8j + 11k

a) Definir analytiquement S
Montrer que S est subjectif
b) Demontrer que l'ensemble des vecteurs invariants par S est un plan vectoriel P dont on detrrminera une base (vecteur i', vecteur j')
c) Demontrer que l'ensemble des vecteurs U de E tels que S (U) = -U est une droite vectorielle dont on detrrminera une base vecteur k'.
d) Demontrer que (vecteur i, vecteur j vecteur k ) est une base de E et definir analytiquement l'endomorphisme S de cette base.
e) On designe par p la projection de E sur P parallèlement à D.
Demontrer que : Quelque soit vecteur U appartenant à P , S vecteur U = 2p vecteur u - vecteur u .​


Répondre :

Réponse :

Explications étape par étape

Voir l'image OLIVIERRONAT
Voir l'image OLIVIERRONAT
Voir l'image OLIVIERRONAT
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions