👤

Exercice 1. Factoriser chaque expression (identites
remarquables)
A = 9x^2 + 30x + 25
B = x^2 + 10x + 25
C=4t^2 + 24t + 36
D = 9x2 +64 +48x
E =9+ 4x^2 - 12x
F = x^2 - 2x + 1
G = y^2 - 18y + 81
H = x2 - 49
1 = 81-t^2
J = 16x^2 - 36

Merci de me répondre le plus rapidement possible ​


Répondre :

Bonsoir :)

Réponse en explications étape par étape :

- Question : Factoriser chaque expressions comme identité remarquable :

A = 9x² + 30x + 25

A = (3x)² + (2 * 3x * 5) + (5)²

A = (3x + 5)²

A = (3x + 5)(3x + 5)

B = x² + 10x + 25

B = (x)² + (2 * x * 5) + (5)²

B = (x + 5)²

B = (x + 5)(x + 5)

C = 4t² + 24t + 36

C = (2t)² + (2 * 2t * 6) + (6)²

C = (2t + 6)²

C = (2t + 6)(2t + 6)

D = 9x² + 64 + 48x

D = 9x² + 48x + 64

D = (3x)² + (2 * 3x * 8) + (8)²

D = (3x + 8)²

D = (3x + 8)(3x + 8)

 

E = 9 + 4x² - 12x

E = 4x² - 12x + 9

E = (2x)² - (2 * 2x * 3) + (3)²

E = (2x - 3)²

E = (2x - 3)(2x - 3)

F = x² - 2x + 1

F = (x)² - (2 * x * 1) + (1)²

F = (x + 1)²

F = (x + 1)(x + 1)

G = y² - 18y + 81

G = (y)² - (2 * y * 9) + (9)²

G = (y + 9)²

G = (y + 9)(y + 9)

H = x² - 49

H = (x)² - (7)²

H = (x - 7)(x + 7)

I = 81 - t²

I = (9)² - (t)²

I = (9 - t)(9 + t)

J = 16x² - 36

J = (4x)² - (6)²

J = (4x - 6)(4x + 6)

Voilà