Répondre :
Réponse :
Bonjour
Explications étape par étape
1)
f(x)=2x²-x+1
Donc :
f '(x)=4x-1
2)
Equa tgte :
y=f '(2)(x-2)+f(2)
f '(2)=7
f(2)=7
y=7(x-2)+7
y=7x-7
3)
a)
f(x)-g(x)=2x²-x+1-(7x-7)=2x²-8x+8
b)
J'appelle h(x)=f(x)-g(x)=2x²-8x+8
h(x) est < 0 entre les racines s'il y en a car le coeff de x² est > 0.
x²-4x+4=0 soit :
(x-2)²=0
En fait h(x) toujours ≥ 0 et h(x)=0 pour x=2.
x---------->-∞......................2....................+∞
f(x)-g(x)-->............+...........0............+............
c)
On a donc : f(x)-g(x) ≥ 0 soit :
f(x) ≥ g(x)
qui prouve que Cf est toujours au-dessus de Cg ( point de tangence en x=2)
Voir graph non demandé.

Bonjour,
Feuille en pièces jointes.
Voilà, j'y ai ajouté quelques explications si il y'a des incompréhensions revenez vers moi


Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !