👤

bonjour je suis en seconde pouvez vous m'aider :
pour ton nombre réel x on considère l'expression
A=(x)=(1+x)² - (3x+2)(x+1)
a) developper et reduire et ordonner A(x)
b) factoriser A(x)
c) choisir la forme de A(x) la plus adaptée pour résoudre chacune des expression suivantes :
A(x)<0 A(x)>-1


Répondre :

Réponse:

a)A=

[tex]1 + x^{2} + 2x - 3x ^{2} - 3x - 2x - 2[/tex]

[tex] - 1 - 2x ^{2} - 3x[/tex]

b)A=

[tex](1 + x)(1 + x - 3x - 2 =[/tex]

[tex](1 + x)( - 2 - 2x)[/tex]

[tex] - 2(1 + x)(1 + x)[/tex]

c)on va prendre les équation ici

[tex] - 1 - 2x^{2} - 3x = - 1[/tex]

[tex] - 2x {}^{2} - 3x = 0[/tex]

[tex] - x(2x + 3) = 0[/tex]

[tex]x = 3 \div2[/tex]

[tex] - 2(1 + x)(1 + x) = 0[/tex]

[tex]1 + x = 0 ou 1 + x = 0[/tex]

[tex]x = - 1[/tex]

bonne soirée

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions