Répondre :
Bonjour,
1)
La première dérivée de la fonction f est : f'(x), Insérez n'importe quelle valeur a pour x dans f' et le résultat sera la pente de la droite tangente de f(x) au point où x = a.
Dans notre cas, la dérivée f(x) est y' et l'ordonnée de la fonction f(x) est y.
La pente de la tangente soit égale au carré de l’ordonnée de ce
point, ce qui donne l'équation différentielle y' = y².
Donc il faut chercher toutes les solutions, définies sur un intervalle, qui satisfont cette équation.
2)
y' / y² = 1
L’intégrale de 1 = x + C avec C constante ∈ R
y' / y² forme (u'v - uv')/v² = u/v si u=-1 et v=y(x), la dérivé est par rapport à x.
Vérifions : (-1 / y)' = (0*y - (-1)*y') / y² = y' / y²
L'intégrale de y' / y² est ( -1 / y )
-1 / y = x + C
-1 = yx + yC
-1 = y ( x + C)
y = -1 / ( x + C)
donc la fonction est y = -1/( x + C) avec I ∈ R / { -C } --> Pour le domaine voir un modérateur ou je pense R
3) 1 = -1 / ( 0 + C)
1 = -1 / C
C= - 1
Pour C=-1 la fonction est f(x) = -1 / ( x - 1 )
si x=0 f(0)=1 OK
Cf. représentation graphique
Sujet intéressant pour introduire les équations différentielles.
Bon courage
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !