Répondre :
Réponse :
Explications étape par étape :
Bonjour,
1) intervalle : 6≥x≥0
2)Smnd = Sabcd - Smbn - Sdam - Sdnc = 6² - (6-x)x/2 - 6x/2 - 6(6-x)/2 = 36 --3x +x²/2 -3x -18 +3x = 18 -3x +x²/2 = A(x)
3)A(x) = x²/2 -3x +18 = 26 soit x²/2 -3x -8 =0
l'étude de x²/2 -3x -8 =0 aboutie à 2 racines soit x=-2 soit x= 8 toute les 2 hors du domaine de validation de x, donc A(x) ne peut pas être égale à 26cm2.
4) A(x) minimale quand d/dx [a(x)] = 0
d/dx [a(x)] = d/dx [x²/2 -3x +18] = x-3 donc dérivé nulle pour x= 3 donc A(3) = 9/2 -9 +18 = 9/2 + 9 = 13.5cm2
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !