👤

svp aider moi pour mon dm de demain svp!

Le jeu des allumettes Ce jeu se joue à 2 joueurs (joueur A et joueur B).

On aligne 127 allumettes sur la table.
A tour de rôle, chaque joueur peut prendre 1, 2 ou 3 allumettes au maximum.

Le perdant est celui qui prend la dernière allumette. S'il joue bien, l'un des 2 joueurs est sûr de gagner quel que soit le nombre d'allumettes que prendra son adversaire à chaque fois.
Lequel ? Et pourquoi ?​


Répondre :

Cette question a déjà été posée et voici la réponse:

lorsqu'à la fin du jeu il reste 4 allumettes, le joueur à qui c'est le tour est sûr de gagner.
Il prend 3 allumettes et son adversaire est obligé de prendre la dernière
le joueur A commence
pour arriver à cette situation il doit se débrouiller pour laisser, chaque fois qu'il a joué, un nombre d'allumettes multiple de 4
• départ 127 allumettes
127 = 31 x 4 + 3
1er tour
le joueur A prend 3 allumettes, reste 124 (multiple de 4)
2e tour
joueur B
s'il prend 1 allumette le joueur A en prendra 3 au tour suivant
" 2 allumettes " 2 "
s'il prend 3 allumette le joueur A en prendra 1 au tour suivant
et il y aura encore un multiple de 4
et le joueur A continue ainsi jusqu'au bout
Celui qui commence gagne s'il connaît le truc

L'un des 2 joueurs gagnera forcément si quand c à lui de jouer il reste 9 allumettes

Explications étape par étape:

Si il reste 9 allumettes et que c'est au joueur A de jouer:

si il en prend 1 tu en prends 3, si il en prend 2 tu en prends 2, si il y en prend 3 il en prend 1.

Ce qui revient dans tous les cas à 5 allumettes et c'est à lui de jouer.

Et là tu fais exactement le même principe comme ça il lui en reste forcément une et c'est lui qui l'a prend

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions