Répondre :
Bonjour
Développer et réduire (double distributivité)
A = (x + 3)(x - 5)
A = x² - 5x + 3x - 15
A = x² - 2x - 15
B = (a - 5)(a - 7)
B = a² - 7a - 5a + 35
B = a² - 12a + 35
C = (2x + 5)(3x - 2)
C = 6x² - 4x + 15x - 10
C = 6x² + 11x - 10
D = (5x + 6)(2x - 7)
D = 10x² - 35x + 12x - 42
D = 10x² - 23x - 42
E = (-5y + 3)(-3y -- 4) erreur de signe
F = (5x + 4)(2x - 3) + (3x + 5)(2x - 7)
F = 10x² - 15x + 8x - 12 + 6x² - 21x + 10x - 35
F = 10x² + 6x² + 8x + 10x - 21x - 15x - 12 - 35
F = 16x² - 18x - 47
G = (2a - 3)(5a - 1) + (3a - 2) (3a-5)
G = 10a² - 2a- 15a + 3 + 9a² - 15a - 6a + 10
G = 10a² + 9a² - 2a - 15a - 15a - 6a + 3 + 10
G = 19a² - 38a + 13
H = (2x - 3)(5x - 4) - (3x - 5)(4x + 3)
H = 10x² - 8x - 15x + 12 - (12x² + 9x - 20x - 15)
H = 10x² - 8x - 15x + 12 - 12x² - 9x + 20x + 15
H = 10x²- 12x² - 8x - 15x - 9x + 20x + 12 + 15
H = 2x² - 12x + 27.
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !