👤

Bonjour, je n’arrives pas à faire cet exercice (le deuxième), merci d’avance !

Bonjour Je Narrives Pas À Faire Cet Exercice Le Deuxième Merci Davance class=

Répondre :

Réponse:

pour la 2) de l'exo 2, tu dois mettre les deux fractions au même dénominateur, dénominateur qui sera (x-1)(x+1)

Réponse :

Explications étape par étape :

Bonsoir

1/(x -1) + 1/(x +1) = 1

les valeurs a exclure sont

x - 1 ≠ 0 et x + 1 ≠0

x ≠ 1 et x ≠ - 1

en mettant tout sur le même dénominateur (x - 1)(x + 1) on a

[(x + 1) + (x -1)] / (x - 1) (x +1) = (x - 1) (x +1)/ (x - 1) (x +1)

ce qui veut dire que [(x + 1) + (x -1)] = (x - 1) (x +1)

or (x - 1) (x +1) = x² - 1 car c'est de la forme (a - b) (a +b) = a² - b²

donc on a

[(x + 1) + (x -1)] = (x - 1) (x +1)

x + 1 + x - 1 = x² - 1

2x = x² - 1

x² - 2x - 1 = 0

calculons le discriminant Δ = b² - 4 ac

avec a = 1, b = - 2, c = - 1

Δ = (-2)² - 4 (1)(-1)

Δ = 4 + 4

Δ = 8> 0 et √Δ= √8 = √4√2 =2√2

donc l'équation x² - 2x - 1 = 0 admet deux solutions

x₁= ( - b - √Δ) /(2a) et x₂= ( - b + √Δ) /(2a)

avec a = 1, b = - 2, c = - 1

x₁ = (- (-2) - 2√2)/(2(1)) et x₂= (- (-2) + 2√2)/(2(1)

x₁ = (2 - 2√2)/2 et x₂ = (2 + 2√2)/2

x₁ = 1 - √2 et x₂ = 1 + √2

S = { 1 - √2; 1 + √2}

Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !


Go Class: D'autres questions