Répondre :
Bonjour,
1. il suffit de remplacer x par 0 :
y = 1/4 × 0² + 0 + 0,5 donc 0,5 m
2. Sommet de la parabole atteint en -b/2a
donc en -1/(-1/2) = 2
Donc altitude maximale : y = -1/4 × 2² + 2 + 0,5 = 2
l'altitude maximale est donc de 2 m
3. il suffit de résoudre l'équation suivante :
-1/4x² + x + 0,5 = 0
∆ = b² - 4ac = 1 - 4 × (-1/4) × 0,5 = 3/2 > 0
donc deux racines dans R :
X1 = (-b - √∆)/2a = (-1 - 3/2)/(-1/2) = 5
X2 = (-b + √∆)/2a = (-1 + 3/2)/(-0,5) = -1 (on ne retient pas puisque < 0)
La poche étant à 0,5 m , la longueur du saut est donc de 5 - 0,5 = 4,5 m (sauf erreur)
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !