Répondre :
Réponse :
Explications étape par étape :
Bonjour
h est une fonction dérivable sur ]− 0.2 ; +∞[
h(x) est de la forme √(u(x)) et la formule de dérivée de √(u(x)) est
u'(x)/(2√u(x))
h(x) = 2√(5x + 1)
posons u(x) = (5x + 1)
u'(x) = 5
en appliquant la formule sur la dérivée de √u(x) on a donc sa dérivée qui vaut
u'(x)/(2√u(x)) = 5 /(2√(5x + 1) )
ainsi h'(x) = 2× 5 /(2√(5x + 1) )
donc h'(x) = 5/ √(5x + 1)
h'(x) est strictement positve sur ]− 0.2 ; +∞[ donc elle ne possède pas pas de tangentes horizontales
h'(0) = 5/ √(5(0) + 1)
h'(0) = 5/ √(1)
h'(0) = 5
Je ne peux pas aller plus loin dans ma réponse je ne connais pas f(x) ni g(x) ni leur courbes respectives
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !