Répondre :
1) Appliquer chaque programme aux nombres :
•10
Que constate t-on ? Émettre une conjecture.
Voici deux programmes de calculs:
•Programme A:
-Choisir un nombre. 10
-Soustraire 3. 7
-Elever au carré. 49
-Soustraire 9. 40
•Programme B:
-Choisir un nombre 10
-Soustraire 6 4
-Multiplier par le nombre choisi 4x10 = 40
idem avec •5 et •-2
a priori résultats identiques
2) On note n le nombre choisi au départ,
Exprimer en fonction de n le résultat obtenu avec chaque programme.
•Programme A:
-Choisir un nombre. n
-Soustraire 3. n-3
-Elever au carré. (n-3)²
-Soustraire 9. (n-3)² - 9
•Programme B:
-Choisir un nombre n
-Soustraire 6 n-6
-Multiplier par le nombre choisi n(n-6)
3) Démontrer la conjecture formulée à la question 1).
résultat du A = (n-3)² - 9 soit = n² - 2*n*3 + 3² = n² - 6n + 9 - 9 = n² - 6n
et résultat du B = n(n-6) = n² - 6n
résultats identiques
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !