Répondre :
Réponse :
ex.64
Déterminer les limites suivantes à l'aide du taux d'accroissement
1) lim (e^h - 1)/h
h→0
lim (f(0+h) - f(0))/h = f '(0) avec f(x) = eˣ
h→0
la fonction f est dérivable en 0 est sa dérivée f '(x) = eˣ d'où f '(0) = e⁰ = 1
donc lim (e^h - 1)/h = 1
h→0
2) lim (t³ - 8)/(t - 2)
t→2
lim (f(2+h) - f(2))/h = (h³ + 6 h² + 12 h + 8 - 8)/h avec f(t) = t³
h→0
lim (f(2+h) - f(2))/h = h(h² + 6 h + 12)/h = f '(2)
h→0
f est dérivable sur R est sa dérivée f ' est f '(t) = 3 t² ⇒ f '(2) = 3*2² = 12
donc lim (t³ - 8)/(t - 2) = 12
t→2
3) tu fais la 3 en utilisant la méthode ci-dessus
Explications étape par étape :
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !