👤

bonjour besoin d'aide s'il vous plaît nul en maths merci beaucoup bon week-end ​

Bonjour Besoin Daide Sil Vous Plaît Nul En Maths Merci Beaucoup Bon Weekend class=

Répondre :

Bonjour, voici la réponse explicative à ton exercice :

Lorsque dans une équation tu cherches x, mais que tu bloques avec une équation-type, du genre x² = .., il te faudra simplement disparaître le carré ! Plus facile à dire qu'à faire, et non car c'est tout simple !

Tu as par exemple x² = 81

Tu vas alors ajouter une racine carré de chaque côté, tel que :

[tex]\sqrt{x^2}[/tex] = [tex]\sqrt{81}[/tex]

Et tu sais que [tex]\sqrt{x^2}[/tex] = [tex]| x |[/tex] (la valeur absolue de ta valeur, car x∈Ν (entier naturel).

Donc tu auras :

x = [tex]\sqrt{81}[/tex]

⇔ x = 9

→ Je rappelle aussi la propriété générale :

Pour x² = f(a), les solutions sont x = [tex]\sqrt{f(a)}[/tex], [tex]- \sqrt{f(a)}[/tex]

On reprend donc l'exercice :

a. x² = 3

⇔ x = [tex]\sqrt{3}[/tex] ou x = [tex]- \sqrt{3}[/tex]

b. x² = 8,1

⇔ x = [tex]\sqrt{8,1}[/tex] ou x = [tex]- \sqrt{8,1}[/tex]

c. x² = 20

⇔ x = [tex]\sqrt{20}[/tex] ou x = [tex]- \sqrt{20}[/tex]

x = 2[tex]\sqrt{5}[/tex] ou x = -2[tex] \sqrt{5}[/tex]

d. x² - 5 = 0

⇔ x² = 5

⇔ x = [tex]\sqrt{5}[/tex] ou x = [tex]- \sqrt{5}[/tex]

e. x² - 1,7 = 0

⇔ x² = 1,7

⇔ x = [tex]\sqrt{1,7}[/tex] ou x = [tex]- \sqrt{1,7}[/tex]

f. x² - 0,5 = 0

⇔ x² = 0,5

⇔ x = [tex]\sqrt{0,5}[/tex] ou [tex]- \sqrt{0,5}[/tex]

En espérant t'avoir aidé au maximum !