Répondre :
Réponse :
bonsoir
A (x) = 4 x² - 12 x + 9 - ( 2 x² + 2 x - 3 x - 3 )
A (x) = 4 x² - 12 x + 9 - 2 x² - 2 x + 3 x + 3
a (x) = 2 x² - 11 x + 12
B (x) = 3 ( 9 x² - 1 ) + 6 x - 2
b (x) = 27 x² - 3 + 6 x - 2
B ( x) = 27 x² + 3 x - 2
B (x) = ( 3x - 1 ) ( 9 x + 3 + 2 )
B (x) = ( 3 x - 1 ) ( 9 x + 12 )
C (x) = ( 2 x + 5 )²
d (x) = ( 2 x + 1 - 7 ) ( 2 x + 1 + 7 )
D (x) = ( 2 x - 6 ) ( 2 x + 8 )
Explications étape par étape
Hey !
1. Développer et réduire A(x) et B(x).
A(x) = (2x - 3)² - (2x - 3)(x + 1)
A(x) = 4x² - 12x + 9 - (2x² + 2x - 3x - 3)
A(x) = 4x² - 12x + 9 - 2x² - 2x + 3x + 3
A(x) = 2x² - 11x + 12
B(x) = 3(3x + 1)(3x - 1) + 2(3x - 1)
B(x) = 3(9x² - 1) + 6x - 2
B(x) = 27x² - 3 + 6x - 2
B(x) = 27x² + 6x - 5
2. Factoriser B(x), C(x) et D(x).
B(x) = 3(3x + 1)(3x - 1) + 2(3x - 1)
B(x) = (3x - 1)[3(3x + 1) + 2]
B(x) = (3x - 1)(9x + 3 + 2)
B(x) = (3x - 1)(9x + 5)
C(x) = 4x² + 20x + 25
C(x) = (2x)² + 2 × 2x × 5 + 5²
C(x) = (2x + 5)²
D(x) = (2x + 1)² - 49
D(x) = (2x + 1)² - 7²
D(x) = [(2x + 1) - 7][(2x + 1) + 7]
D(x) = (2x + 1 - 7)(2x + 1 + 7)
D(x) = (2x - 6)(2x + 8)
D(x) = 4(x - 3)(x + 4)
Bonne journée.
Merci d'avoir visité notre site, qui traite de Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À très bientôt, et pensez à ajouter notre site à vos favoris !